Machine Learning Research Blog

Francis Bach

Menu
  • Home
  • About
  • Home page
Menu

Information theory with kernel methods

Posted on April 4, 2022December 11, 2023 by Francis Bach

In last month blog post, I presented the von Neumann entropy. It is defined as a spectral function on positive semi-definite (PSD) matrices, and leads to a Bregman divergence called the von Neumann relative entropy (or matrix Kullback Leibler divergence), with interesting convexity properties and applications in optimization (mirror descent, or smoothing) and probability (concentration…

Read more

Playing with positive definite matrices – II: entropy edition

Posted on March 7, 2022March 22, 2022 by Francis Bach

Symmetric positive semi-definite (PSD) matrices come up in a variety of places in machine learning, statistics, and optimization, and more generally in most domains of applied mathematics. When estimating or optimizing over the set of such matrices, several geometries can be used. The most direct one is to consider PSD matrices as a convex set…

Read more

Playing with positive definite matrices – I: matrix monotony and convexity

Posted on February 17, 2022January 27, 2023 by Francis Bach

In a series of a few blog posts, I will present classical and non-classical results on symmetric positive definite matrices. Beyond being mathematically exciting, they arise naturally a lot in machine learning and optimization, as Hessians of twice continuously differentiable convex functions and through kernel methods. In this post, I will focus on the benefits…

Read more

Approximating integrals with Laplace’s method

Posted on July 23, 2021 by Francis Bach

Integrals appear everywhere in all scientific fields, and their numerical computation is an active area of research. In the playbook of approximation techniques, my personal favorite is “la méthode de Laplace”, a must-know for students that like to cut integrals into pieces, that comes with lots of applications. We will be concerned with integrals of…

Read more

The quest for adaptivity

Posted on June 17, 2021September 11, 2021 by Francis Bach

Most machine learning classes and textbooks mention that there is no universal supervised learning algorithm that can do reasonably well on all learning problems. Indeed, a series of “no free lunch theorems” state that even in a simple input space, for any learning algorithm, there always exists a bad conditional distribution of outputs given inputs…

Read more

I am writing a book!

Posted on April 5, 2021April 6, 2021 by Francis Bach

After several attempts, I finally found the energy to start writing a book. It grew out of lecture notes for a graduate class I taught last semester. I make the draft available so that I can get feedback before a (hopefully) final effort next semester. The goal of the book is to present old and…

Read more

Going beyond least-squares – II : Self-concordant analysis for logistic regression

Posted on March 7, 2021 by Francis Bach

Last month, we saw that self-concordance is a key property in optimization, to use local quadratic approximations in the sharpest possible way. In particular it was an affine-invariant quantity leading to a simple and elegant analysis of Newton method. The key assumption was a link between third and second-order derivatives, which took the following form…

Read more

Going beyond least-squares – I : self-concordant analysis of Newton method

Posted on February 1, 2021February 25, 2021 by Francis Bach

Least-squares is a workhorse of optimization, machine learning, statistics, signal processing, and many other scientific fields. I find it particularly appealing (too much, according to some of my students and colleagues…), because all algorithms, such as stochastic gradient [1], and analyses, such as for kernel ridge regression [2], are much simpler and rely on reasonably…

Read more

Finding global minima with kernel approximations

Posted on January 5, 2021January 24, 2021 by Francis Bach

Last month, I showed how global optimization based only on accessing function values can be hard with no convexity assumption. In a nutshell, with limited smoothness, the number of function evaluations has to grow exponentially fast in dimension, which is a rather negative statement. On the positive side, this number does not grow as fast…

Read more

Optimization is as hard as approximation

Posted on December 18, 2020June 14, 2021 by Francis Bach

Optimization is a key tool in machine learning, where the goal is to achieve the best possible objective function value in a minimum amount of time. Obtaining any form of global guarantees can usually be done with convex objective functions, or with special cases such as risk minimization with one-hidden over-parameterized layer neural networks (see…

Read more
  • Previous
  • 1
  • 2
  • 3
  • 4
  • Next

Recent Posts

  • Unraveling spectral properties of kernel matrices – II
  • My book is (at last) out!
  • Scaling laws of optimization
  • Unraveling spectral properties of kernel matrices – I
  • Revisiting the classics: Jensen’s inequality

About

I am Francis Bach, a researcher at INRIA in the Computer Science department of Ecole Normale Supérieure, in Paris, France. I have been working on machine learning since 2000, with a focus on algorithmic and theoretical contributions, in particular in optimization. All of my papers can be downloaded from my web page or my Google Scholar page. I also have a Twitter account.

Recent Posts

  • Unraveling spectral properties of kernel matrices – II
  • My book is (at last) out!
  • Scaling laws of optimization
  • Unraveling spectral properties of kernel matrices – I
  • Revisiting the classics: Jensen’s inequality

Recent Comments

  • Francis Bach on Unraveling spectral properties of kernel matrices – II
  • Chanwoo Chun on Unraveling spectral properties of kernel matrices – II
  • Antonio Horta Ribeiro on Unraveling spectral properties of kernel matrices – II
  • Francis Bach on My book is (at last) out!
  • Francis Bach on Unraveling spectral properties of kernel matrices – I

Archives

  • March 2025
  • December 2024
  • October 2024
  • January 2024
  • March 2023
  • February 2023
  • December 2022
  • November 2022
  • September 2022
  • July 2022
  • April 2022
  • March 2022
  • February 2022
  • July 2021
  • June 2021
  • April 2021
  • March 2021
  • February 2021
  • January 2021
  • December 2020
  • November 2020
  • October 2020
  • September 2020
  • August 2020
  • July 2020
  • June 2020
  • May 2020
  • April 2020
  • March 2020
  • February 2020
  • January 2020
  • December 2019
  • November 2019
  • October 2019
  • September 2019
  • August 2019
  • July 2019
  • June 2019

Categories

  • Machine learning
  • Opinions
  • Optimization
  • Tools

Meta

  • Log in
  • Entries feed
  • Comments feed
  • WordPress.org
©2025 Machine Learning Research Blog | WordPress Theme by Superbthemes.com